The Fisher Information Matrix: Performance Measure and Monte Carlo-Based Computation
نویسنده
چکیده
The Fisher information matrix summarizes the amount of information in the data relative to the quantities of interest. There are many applications of the information matrix in modeling, systems analysis, and estimation, including confidence region calculation, input design, prediction bounds, and “noninformative” priors for Bayesian analysis. This paper reviews some basic principles associated with the information matrix, presents a resampling-based method for computing the information matrix together with some new theory related to efficient implementation, and presents some numerical results. The resampling-based method relies on an efficient technique for estimating the Hessian matrix, introduced as part of the adaptive (“second-order”) form of the simultaneous perturbation stochastic approximation (SPSA) optimization algorithm.
منابع مشابه
Monte Carlo Computation of the Fisher Information Matrix in Nonstandard Settings
The Fisher information matrix summarizes the amount of information in the data relative to the quantities of interest. There are many applications of the information matrix in modeling, systems analysis, and estimation, including confidence region calculation, input design, prediction bounds, and “noninformative” priors for Bayesian analysis. This article reviews some basic principles associate...
متن کاملStochSens - matlab package for sensitivity analysis of stochastic chemical systems
MOTIVATION The growing interest in the role of stochasticity in biochemical systems drives the demand for tools to analyse stochastic dynamical models of chemical reactions. One powerful tool to elucidate performance of dynamical systems is sensitivity analysis. Traditionally, however, the concept of sensitivity has mainly been applied to deterministic systems, and the difficulty to generalize ...
متن کاملA Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...
متن کاملAfrl-osr-va-tr-2014-0119 Information Theoretic Studies and Assesments of Space-object Identification
This document represents the final report on the various scientific activities and accomplishments relating to Grant No. FA9550-09-1-0495 over its period of performance, June 1, 2009 November 30, 2013. The project had the following three overarching technical objectives: 1. Numerical evaluations of multivariate statistical entropies and information for imaging problems 2. bf Information-theoret...
متن کاملInference about the Burr Type III Distribution under Type-II Hybrid Censored Data
This paper presents the statistical inference on the parameters of the Burr type III distribution, when the data are Type-II hybrid censored. The maximum likelihood estimators are developed for the unknown parameters using the EM algorithm method. We provided the observed Fisher information matrix using the missing information principle which is useful for constructing the asymptotic confidence...
متن کامل